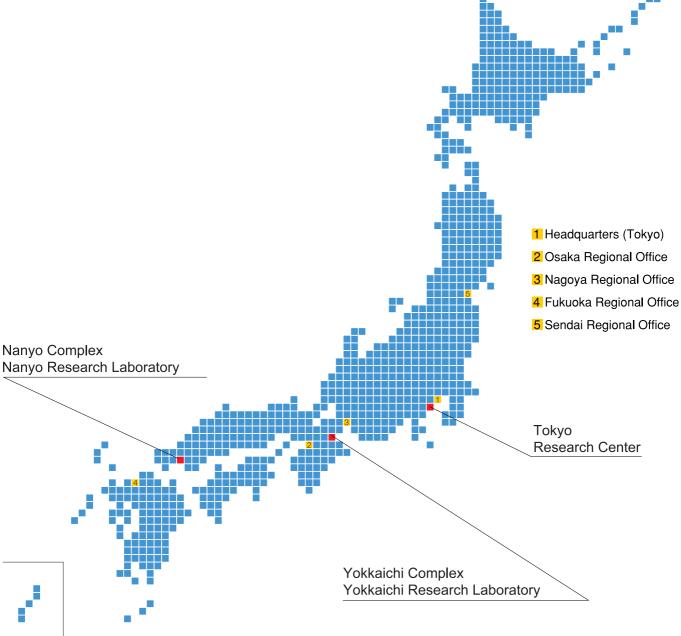


TOSO-CSM Chlorosulphonated Polyethylene R Chlorosulphonated Polyethylene R Alkylated Chlorosulphonated Polyethylene

TOSOH CORPORATION

CONTENTS

Introduction ·····2
Production method of TOSO-CSM and extos ····································
Comparison of TOSO-CSM with other synthetic rubbers4
TOSO-CSM and extos grades ·····5
Features and specifications ······6
TOSO-CSM and extos properties ······7
Formulations and properties for some applications9
TOSO-CSM and extos applications · · · · · · 10
Additives used in CSM 11
Mixing13


TOSO-CSM* Chlorosulphonated Polyethylene extos* Alkylated Chlorosulphonated Polyethylene

Introduction

Tosoh Corporation was established in 1935 as a manufacturer of inorganic chemical products that were centered around caustic soda and soda ash. Since then, Tosoh has developed into a general chemical manufacturer with entry into the petrochemical industry and metal fields, as well as acquiring the Yokkaichi ethylene cracker complex.

Today, Tosoh is developing global businesses in four areas. (1) Basic raw materials that focus on inorganic chemicals, (2) the petrochemical field that includes vinyl chloride monomer, polyethylene, and synthetic rubbers, (3)the specialty and fine chemical fields, such as ceramics, quartz, ethylene amines, and, (4)biotechnology that consists of scientific and diagnostic instruments.

TOSO-CSM® and extos® are special synthetic rubbers that utilize various processes cultivated by Tosoh through proprietary technologies. These unique synthetic rubber products are based on Tosoh technology that has been developed and perfected over years of experience. Used in for example vital security parts, TOSO-CSM® and extos® have earned a solid reputation based on consistent quality and performance that customers can always rely on.

Production method of TOSO-CSM® and extos®

Chlorosulphonated polyethylene (CSM) is a special synthetic rubber manufactured through chlorination and chlorosulphonation of polyethylene.

extos® is a new type of CSM with improved dynamic and low temperature properties.

Structural features

Chlorine

- · Destruction of the crystalline segments
- · Oil resistance
- · Solubility
- · Higher glass-transition temperature

Sulphonyl chloride groups

· Cross-linking point

Single bond on the main chain

Chlorination (+CI) (CH2-CH) m (CH2-CH) n (CH2-CH2) m (CH2-CH) n (CH2-CH2) m (CH2-CH3) m (CH3) m (CH3)

(Polyethylene)

Production process

TOSO-CSM⁶

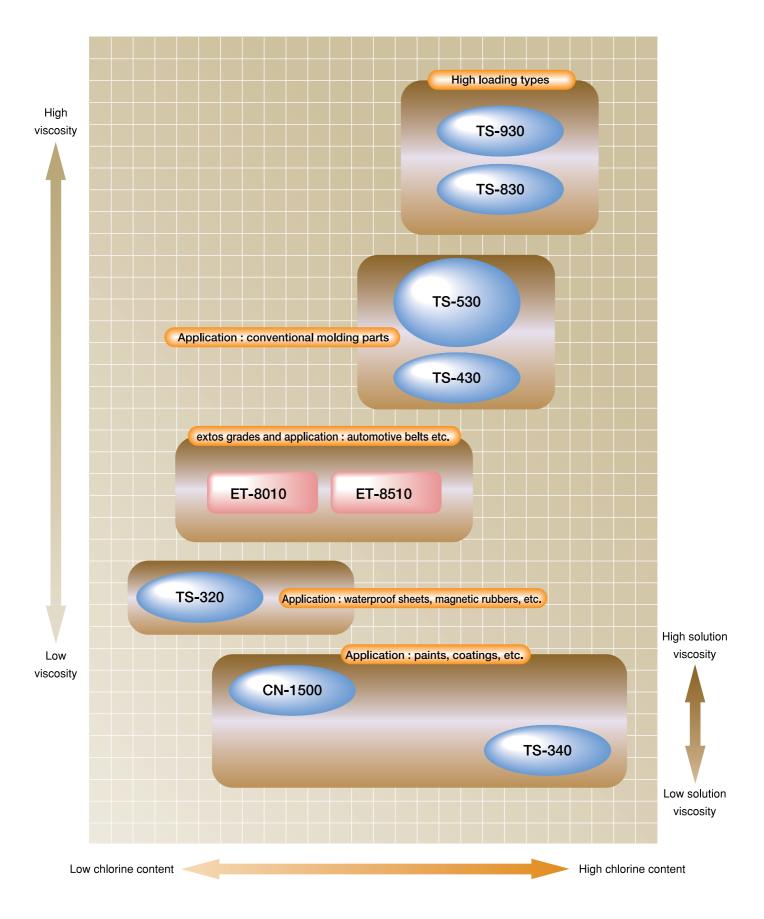
 $\rm TOSO\text{-}CSM^{\scriptsize \$}$ and extos $^{\scriptsize \$}$ are manufactured under certified ISO-9001 conditions at Tosoh Nanyo Complex

Comparison of TOSO-CSM® with other synthetic rubbers

	TOSO-CSM®	CR	EPDM	NBR	SBR	IIR	NR
Tensile strength (pure gum)	0	0	Δ	Δ	Δ	0	0
Tear strength	0	0	Δ	0	Δ	0	0
Abrasion resistance	0	0	0	0	0	0	0
Compression set	0	0	0	0	0	Δ	0
Anti-gas permeability	0	0	Δ	0	Δ	0	Δ
Weather resistance	0	0	0	Δ	Δ	0	Δ
Ozone resistance	0	0	0	×	×	0	×
Heat resistance	0	0	0	Δ	Δ	0	Δ
Flame resistance	0	0	×	×	×	×	×
Discolor resistance	0	×	0	0	0	0	0
Strong acid resistance	0	0	0	0	Δ	0	Δ
Alkali resistance	0	0	0	0	0	0	0
Gasoline resistance	0	0	×	0	×	×	×
Oil resistance	0	0	×	0	×	×	×

 $[\]bigcirc$ excellent \bigcirc good \triangle possible \times impossible

Automobile rubber parts



Rubber panels for railroad crossings

TOSO-CSM® and extos® Grades

Features and specifications

	Grades	Chlorine content (%)	Sulfur content (%)	Mooney viscosity ML(1+4) 100°C	Features
TOSO-CSM®					
	TS-530	35	1.0	56	General-purpose grade that achieves balance in physical properties and processability
	TS-430	35	1.0	46	Similar to the TS-530 with low Mooney viscosity
	TS-830	36	1.0	90	Similar to the TS-530 with high Mooney viscosity
	TS-930	36	1.0	105	Similar to the TS-530 with high Mooney viscosity
	TS-320	23	1.0	37	Thermoplastic that can be used without curing
	TS-340	43	1.1	350*	Good solubility, low solution viscosity, oil resistance
	CN-1500	30	1.4	1400*	Good solubility, low solution viscosity
extos®					
	ET-8010	26	0.7	40	Good dynamic and low temperature properties Vulcanizing adhesion with EPDM is possible
	ET-8510	30	0.9	40	Oil resistance

[%] 25% tolunen solution viscosity { (mPa·s/Brookfield(BL) type viscometer, 23°C)}

TOSO-CSM®

T S - 5 3 0 Most well-balanced grade, superior in physical properties anti-degration, and processability
 T S - 4 3 0 Low viscosity form of the TS-530, with good processability
 T S - 8 3 0 Visocity is between TS-530 and TS-930
 T S - 9 3 0 Highest visocity of the TS-series. Suitable for expansion using large amounts of filler or oil in order to reduce costs
 T S - 3 2 0 Lower chlorine content than general grades, with high hardness and good resistance to cold
 T S - 3 4 0 Superior solubility as an organic solvent
 C N-1500 Superior solubility as an organic solvent

ET-8010 Good resistance to cold, offering better dynamic fatigue resistance
ET-8510 Similar to ET-8010 in all respects, with good resistance to oil

TOSO-CSM® Properties

	Grades		TS-430	TS-530	TS-830	TS-930	TS-320	TS-340	CN-1500
	TOSO-CSM®					100phr			,
Formulation	MgO (High activity)					4			
Form	Pentaerythritol					3			
	Accelerator DPTT					2			
ies	Mooney viscosity ML (1+4) 100 ℃		58	66	111	114	49	37	41
Compound Properties	Mooney Scorch ML (1) 125 °C								
punodı	Vm		28	34	64	66	25	12	20
Con	t5	min	23.1	21.0	20.0	20.0	20.2	31.9	31.4
	100% Tensile stress(M100)	MPa	1.1	1.1	1.2	1.2	3.0	3.3	1.3
	300% Tensile stress(M300)	MPa	2.3	2.4	3.0	2.9	4.4	12.5	3.6
	Tensile strength(TB)	MPa	20.6	20.3	21.0	21.3	30.6	18.1	7.4
ties	Elongation at break(EB)	%	550	540	530	520	520	410	420
Vulcanizate Properties	Hardness(Hs)	JIS-A	56	55	57	57	80	82	55
anizate	Resilience	%	40	42	38	37	61	4	49
Vulc	Compression set (25% compression, aging for 70hrs. at 70°C)	%	79	73	72	69	72	83	83
	Oil resistance (ASTM#30il, aging for 70hrs. at 125°C) Change rate in volume	%	81	80	73	71	230	35	200
	Heat resistance (Aging for 70hrs. at 100°C) Residual rate for TB	%	134	126	131	128	48	122	103
	Residual rate for EB	%	80	80	75	77	67	71	64
	Change in Hs	point	+2	+3	+3	+3	+1	+10	+3
nditions	Sheet 160 °C	min	20	20	20	20	25	35	35
Curing conditions	Compression set 160 ℃	min	25	25	25	25	30	40	40

 $[\]ensuremath{\,\%\,}$ Figures are provided only as a reference and do not serve as exact specifications

extos® Properties

	Grades	ET-8010	ET-8510	
	extos®	100phr		
ılation	MgO (High activity)			4
Formulation	Pentaerythritol			3
	Accelerator DPTT			2
ies	Mooney viscosity ML (1+4) 100 °C		52	50
Compound Properties	Mooney Scorch ML (1) 125 ℃			
punodı	Vm		26	25
Con	t5	min	14.1	21.6
	100% Tensile stress(M ₁₀₀)	MPa	1.3	1.3
	300% Tensile stress(M ₃₀₀)	MPa	2.4	2.7
	Tensile strength(TB)	MPa	22.5	17.8
ties	Elongation at break(EB)	%	570	540
Vulcanizate Properties	Hardness(Hs)	JIS-A	56	56
anizate	Resilience	%	70	60
Vulc	Compression set (25% compression, aging for 70hrs. at 70°C)	%	70	70
	Oil resistance (ASTM#30il, aging for 70hrs. at 125°C) Change rate in volume	%	260	184
	Heat resistance (Aging for 70hrs. at 100°C) Residual rate for TB	%	56	67
	Residual rate for EB	%	65	68
	Change in Hs	point	+2	+3
nditions	Sheet 160 ℃	min	20	25
Curing conditions	Compression set 160 ℃	min	25	30

^{*} Figures are provided only as a reference and do not serve as exact specifications

Formulations and properties for some applications

	TOSO-CSM® TS-530		100phr
	MgO(High activity)		20
_	Special wax		2
Formulation	ACPE 617A		3
l le	Struktol WB-222		2
orn	FEF Carbon Black		55
正	Hydrous silica		8
	TOTM		20
	DCP-40		7.5
	TAIC M-60		6.7
nnd ies	Mooney Scorch ML (1) 125 ℃		
Compound Properties	Vm		67
So. Pro	t5	min	24.7
	100% Tensile stress(M ₁₀₀)	MPa	9.8
es	Tensile strength(TB)	MPa	20.8
Vulcanizate Properties	Elongation at break(EB)	%	200
e Pro	Hardness(Hs)	JIS-A	78
nizat	Compression set (25% compression, aging for 70hrs. at 150°C)	%	39
'ulca	Heat resistance (aging for 70hrs. at 150℃) Residual rate for TB	%	92
	Residual rate for EB	%	76
	Change in Hs	point	+5
Curing conditions	Sheet 160 ℃	min	40
Cui	Compression set 160 ℃	min	45

	Roofing sheet				
	TOSO-CSM® TS-320				
	MgO(High activity)				
u o	ACPE 617A		2		
Formulation	Polyethlene glycol #4000		1		
E E	Calcined clay		30		
Ρ̈́	Light Calcium carbonate		50		
	Titanium dioxide (Rutile type)		25		
	DOP		7		
	Antioxidant BHT		2		
	Mooney Scorch ML (1) 125 ℃				
ties	§ Vm				
roper	t5	>100			
Compound Properties	100% Tensile stress(M100)	MPa	4.3		
odwo	Tensile strength(TB)	MPa	9.4		
0	Elongation at break(EB)	%	780		
	Hardness(Hs) JIS-A				
	Sheeting process conditions Heating press: Preheating100 °C×1min Pressure100 °C×5min×10MPa Cooling23 °C×1min×5MPa Tensile test: Tensile rate50mm/min				

	Electrical wire and cable		
	TOSO-CSM® TS-530		100phr
	MgO(High activity)	5	
	Special wax		2
	White vaseline		2
n	HAF Carbon Black		15
Formulation	Dixie clay		50
mu_	Mistron vapor		40
-or	Naphthenic process oil		15
-	Chlorinated paraffin (CI:45%)		15
	Antioxidant NBC		1
	Pentaerythritol		3
	Accelerator DPTT		2
	Accelerator DM		0.5
nud ies	Mooney Scorch ML (1) 125 ℃		
Compound Properties	Vm		23
Cor	t5	min	18.6
	100% Tensile stress(M ₁₀₀)	MPa	4.6
sə	Tensile strength(TB)	MPa	13.6
perti	Elongation at break(EB)	%	500
e Pro	Hardness(Hs)	JIS-A	73
nizat	Compression set (25% compression, aging for 70hrs. at 150°C)	%	74
Vulcanizate Properties	Heat resistance (aging for 70hrs. at 150°C) Residual rate for TB	%	89
>	Residual rate for EB	%	58
	Change in Hs	point	+15
Curing	Sheet 160 ℃	min	15
Cur	Compression set 160 ℃	min	20

	Belt		
	extos [®] ET-8010		100phr
	Hydrotalcite KW-2100		12
Ē	Special wax		2
atio	Struktol 40MS-F		5
Formulation	FEF Carbon Black		50
-or	Hydrous silica		2
ш	DOS		16
	Antioxidant NBC		0.7
	Pentaerythritol Accelerator DPTT		2
	Vulcanizing agent PM		0.5
p s	Mooney Scorch ML (1) 125 °C		3
Compound Properties	Vm		43
Con	t5	min	20.9
	100% Tensile stress(M ₁₀₀)	MPa	5.6
Se	Tensile strength(TB)	MPa	18.8
Vulcanizate Properties	Elongation at break(EB)	%	330
Prol	Hardness(Hs)	JIS-A	72
iizate	Compression set (25% compression, aging for 22hrs. at 100℃)	%	30
ulcan	Heat resistance (aging for 70days. at 140°C) Residual rate for TB	%	101
>	Residual rate for EB	%	55
	Change in Hs	point	+13
Curing conditions	Sheet 160 °C	min	30
Cur	Compression set 160 ℃	min	35

 $[\]ensuremath{\mathrm{\%}}$ Figures are provided only as a reference and do not serve as exact specifications

TOSO-CSM[®] Applications

	Fields	Applications
TOSO-CSM®	Automotive parts	Fuel hoses, power steering hoses, hydraulic hoses, brake hoses
	Electric parts, electric wire	High-tension cables, low-tension cables, communication cables, submarine cables, ship's wires, heat-resistant wire coverings, radioactive-resistant cables
	General industrial articles	High-pressure hoses, LPG hoses, chemical-resistant hoses, rolls, linings
	Engineering and building articles	Escalator handrails, building gaskets pond lining sheets, roofing sheets weather-resistant paints
	Others	Rubber boats, rainwears, chemical-resistant gloves adhesives, paints, coatings

extos® Applications

	Fields	Applications
extos®	Automotive parts	Synchronous timing belts, poly-V-belts, coverings for the weatherstrips
	Train parts	Coupling coverings
	Engineering and building articles	Building gaskets

Rubber boats

Rubber rolls for iron manufacturing

Additives used in CSM

Ingredients	The example of Agents	Notes
Acid acceptors	Magnesium oxide Hydrotalcite Mg6Al2(OH)16CO3- 4H2O Lead monoxide PbO	Acid acceptors have to be added to CSM compound to catch acid when CSM is vulcanized.
Reinforcing agents	Carbon black	The effects of carbon black on vulcanized product are similar to other vulcanized rubber. They increase modulus and hardness, and improve abrasion resistance. SRF,FEF,FT and MT are used frequently. With a decrease in the particle size, the viscosity of the compounds, modulus and hardness of the vulcanized product are increased, working stability, elongation and rebound elasticity are decreased and tensile strength is increased slightly.
	Silica	Elongation and tear strength are increased but tensile strength and abrasion resistance are decreased when compared with carbon black.
Fillers	Calcium carbonate Clay Talc	Used as diluents for cutting down on expenses
Oils Plasticizers Softeners	Phthalic acid derivatives Fatty acid derivatives Mineral oils Aromatic oils Vegetable oils	The use of oils result in charasteristics of low temperature and flexibility of the vulcanized product. A larger amount of oil is required for obtaining the vulcanized products having the same hardness as other vulcanized rubber products. Naphthenic oil may be bled by adding an amount higher than 20 phr. When a large amount is to be used, aromatic oil or chlorinated paraffin is effective.
Processing aid	Vaseline, microcrystalline wax, Low molecular weight polyethylene Stearic acid	Added to improve the processability of compounds
Antioxidants Antiozonants		Added to improve ozone resistance. NBC is used generally. When NBC is used in an amount higher than 3 phr, the working stability is reduced.
Tackifiers		Added to give tackiness to compound. Aromatic oil or low molecular weight indenecoumarone resin.
Blowing agents		Used to make foaming products
Flame retardants	Antimony trioxide Chlorinated paraffin Aluminum hydroxide	

Ingredients	The example of Agents	Notes
Vulcanization agents	Thiuram vulcanization system • Dipentamethylenethiuram tetrasulfide, DPTT (TRA) • Tetramethylthiuramdisulfide, TMTD (TT) • Tetraethylthiuramdisulfide, TETD (TET) + • Pentaerythritol	Merit Stability of compound during mixing process Tensile strength Elongation at break Demerit Stability of compound under storage Compression set Heat resistance Discolor resistance
	Bismaleimide vulcanization system N, N'-m-phenylendimaleimide + Nickel dibutyldithiocarbonate 6-Ethoxy-2, 2, 4-trimethyl-1, 2-dihydroquinoline	Merit Heat resistance Compression set Demerit Stability of compound under storage Stability of compound during rubber mixing process Tensile strength Elongation at break
	Peroxide vulcanization system • 1,3-bis (tert-butylperoxy isopropyl) benzene + • Trially isocyanurate	Merit Stability of compound under mixing process Heat resistance Compression set Discolor resistnace Demerit Tensile strength Elongation at break Handling of peroxide Smell of peroxide

[%] Zinc oxide or Zinc stearate must not be used as this will result in extreme decreases in the heat resistance of the vulcanized product

Mixing

CSM compounds are mixed in internal mixers and on roll mills. Internal mixers are preferred for speed and batch sizes. For small batches mill mixing is satisfactory.

Internal Mixing

A: Upside-down Mixing (Recommended)

1st stage (internal mixer)

- 1) Charging of all ingredients except accelerators
- 2) Charging of CSM
- 3) Cleaning
- 4) Mixing
- 5) Dumping
- 6) Sheeting off
- 7) Cooling and storage

2nd stage (mixing roll)

- 8) Banding of compound
- 9) Charging of accelerator
- 10) Mixing to adequate distribution
- 11) Release at mill
- 12) Cooling and storage

Mill Mixing

- 1) Mastication of CSM
- 2) Charging of reinforcements (1/2) and acid acceptors
- 3) Charging of processing aids(1/2)
- 4) Charging of reinforcements(1/2) and processing aids(1/2)
- 5) Charging of fillers and plasticizers
- 6) Charging of accelerators
- 7) Mixing to adequate distribution
- 8) Release at mill
- 9) Cooling and storage

Notes on mixing and storage

Mixing

- (1) Internal mixing
 - ① The milling can be carried through normal procedure, however the up-side-down procedure is most effective.
 - ② Charging: $70 \sim 75\%$ as a proportion standard
 - 3 Scorching can be prevented by

 - (b) adding the vulcanizing agent and accelerator using the rolls
 - (c) cooling the compound. However when the compound is cooled by dipping it in cold water, the water that adheres should be completely removed and the sheets dried.
- (2) Milling through rolls
 - ① Suppression of heat generation by passing cooling water through the rolls.
 - ② The milling is facilitated by passing the thin sheet 3 to 5 passes through the rolls.
 - 3 Cool sheets quickly by reducing the thickness of sheet.

Storage of compounds

- · Mixed compounds should not be stored in conditions of high humidity.
- · Mixed compounds containing accelerators should be used immediately.
- · If the mixed compounds need to be stored, accelerators should be added just before use.

Application of Tosoh Elastomers

SKYPRENE®

Automotive parts; Hoses, belts, boots, seals, wipers, etc Industrial parts; Belts, wire and cable, rubber vibration insulator, etc Industrial and consumer adhesives Wet suits Rubber yarn Rubber sheets and coated fabrics and many others

TOSO-CSM® and extos®

Automotive hoses, industrial hoses Jacketing and insulation for wire and cable Rubber sheets and coated fabrics Seals, gaskets Rolls Escalator handrails and many others